Extensions 1→N→G→Q→1 with N=C4oD4 and Q=C23

Direct product G=NxQ with N=C4oD4 and Q=C23
dρLabelID
C23xC4oD464C2^3xC4oD4128,2322

Semidirect products G=N:Q with N=C4oD4 and Q=C23
extensionφ:Q→Out NdρLabelID
C4oD4:1C23 = C2xD4oD8φ: C23/C2C22 ⊆ Out C4oD432C4oD4:1C2^3128,2313
C4oD4:2C23 = C2xD4oSD16φ: C23/C2C22 ⊆ Out C4oD432C4oD4:2C2^3128,2314
C4oD4:3C23 = D8:C23φ: C23/C2C22 ⊆ Out C4oD4168+C4oD4:3C2^3128,2317
C4oD4:4C23 = C22xC4oD8φ: C23/C22C2 ⊆ Out C4oD464C4oD4:4C2^3128,2309
C4oD4:5C23 = C22xC8:C22φ: C23/C22C2 ⊆ Out C4oD432C4oD4:5C2^3128,2310
C4oD4:6C23 = C2xD8:C22φ: C23/C22C2 ⊆ Out C4oD432C4oD4:6C2^3128,2312
C4oD4:7C23 = C22x2+ 1+4φ: C23/C22C2 ⊆ Out C4oD432C4oD4:7C2^3128,2323
C4oD4:8C23 = C22x2- 1+4φ: C23/C22C2 ⊆ Out C4oD464C4oD4:8C2^3128,2324
C4oD4:9C23 = 2+ 1+6φ: C23/C22C2 ⊆ Out C4oD4168+C4oD4:9C2^3128,2326
C4oD4:10C23 = C2xC2.C25φ: trivial image32C4oD4:10C2^3128,2325

Non-split extensions G=N.Q with N=C4oD4 and Q=C23
extensionφ:Q→Out NdρLabelID
C4oD4.1C23 = C2xD4:4D4φ: C23/C2C22 ⊆ Out C4oD416C4oD4.1C2^3128,1746
C4oD4.2C23 = C2xD4.9D4φ: C23/C2C22 ⊆ Out C4oD432C4oD4.2C2^3128,1747
C4oD4.3C23 = C2xD4.8D4φ: C23/C2C22 ⊆ Out C4oD432C4oD4.3C2^3128,1748
C4oD4.4C23 = C2xD4.10D4φ: C23/C2C22 ⊆ Out C4oD432C4oD4.4C2^3128,1749
C4oD4.5C23 = C42.313C23φ: C23/C2C22 ⊆ Out C4oD4164C4oD4.5C2^3128,1750
C4oD4.6C23 = M4(2):C23φ: C23/C2C22 ⊆ Out C4oD4168+C4oD4.6C2^3128,1751
C4oD4.7C23 = M4(2).C23φ: C23/C2C22 ⊆ Out C4oD4328-C4oD4.7C2^3128,1752
C4oD4.8C23 = C42.12C23φ: C23/C2C22 ⊆ Out C4oD4168+C4oD4.8C2^3128,1753
C4oD4.9C23 = C42.13C23φ: C23/C2C22 ⊆ Out C4oD4328-C4oD4.9C2^3128,1754
C4oD4.10C23 = D8:11D4φ: C23/C2C22 ⊆ Out C4oD4168+C4oD4.10C2^3128,2020
C4oD4.11C23 = D8.13D4φ: C23/C2C22 ⊆ Out C4oD4328-C4oD4.11C2^3128,2021
C4oD4.12C23 = D8oSD16φ: C23/C2C22 ⊆ Out C4oD4324C4oD4.12C2^3128,2022
C4oD4.13C23 = D8:6D4φ: C23/C2C22 ⊆ Out C4oD4164C4oD4.13C2^3128,2023
C4oD4.14C23 = D8oD8φ: C23/C2C22 ⊆ Out C4oD4164+C4oD4.14C2^3128,2024
C4oD4.15C23 = D8oQ16φ: C23/C2C22 ⊆ Out C4oD4324-C4oD4.15C2^3128,2025
C4oD4.16C23 = C2xQ8oD8φ: C23/C2C22 ⊆ Out C4oD464C4oD4.16C2^3128,2315
C4oD4.17C23 = C8.C24φ: C23/C2C22 ⊆ Out C4oD4324C4oD4.17C2^3128,2316
C4oD4.18C23 = C4.C25φ: C23/C2C22 ⊆ Out C4oD4328-C4oD4.18C2^3128,2318
C4oD4.19C23 = C22xC4wrC2φ: C23/C22C2 ⊆ Out C4oD432C4oD4.19C2^3128,1631
C4oD4.20C23 = C2xC42:C22φ: C23/C22C2 ⊆ Out C4oD432C4oD4.20C2^3128,1632
C4oD4.21C23 = 2- 1+4:5C4φ: C23/C22C2 ⊆ Out C4oD4164C4oD4.21C2^3128,1633
C4oD4.22C23 = C2xC8oD8φ: C23/C22C2 ⊆ Out C4oD432C4oD4.22C2^3128,1685
C4oD4.23C23 = C2xC8.26D4φ: C23/C22C2 ⊆ Out C4oD432C4oD4.23C2^3128,1686
C4oD4.24C23 = C42.283C23φ: C23/C22C2 ⊆ Out C4oD4324C4oD4.24C2^3128,1687
C4oD4.25C23 = M4(2).51D4φ: C23/C22C2 ⊆ Out C4oD4164C4oD4.25C2^3128,1688
C4oD4.26C23 = M4(2)oD8φ: C23/C22C2 ⊆ Out C4oD4324C4oD4.26C2^3128,1689
C4oD4.27C23 = C2xD4.3D4φ: C23/C22C2 ⊆ Out C4oD432C4oD4.27C2^3128,1796
C4oD4.28C23 = C2xD4.4D4φ: C23/C22C2 ⊆ Out C4oD432C4oD4.28C2^3128,1797
C4oD4.29C23 = C2xD4.5D4φ: C23/C22C2 ⊆ Out C4oD464C4oD4.29C2^3128,1798
C4oD4.30C23 = M4(2).10C23φ: C23/C22C2 ⊆ Out C4oD4324C4oD4.30C2^3128,1799
C4oD4.31C23 = M4(2).37D4φ: C23/C22C2 ⊆ Out C4oD4168+C4oD4.31C2^3128,1800
C4oD4.32C23 = M4(2).38D4φ: C23/C22C2 ⊆ Out C4oD4328-C4oD4.32C2^3128,1801
C4oD4.33C23 = C22xC8.C22φ: C23/C22C2 ⊆ Out C4oD464C4oD4.33C2^3128,2311
C4oD4.34C23 = 2- 1+6φ: C23/C22C2 ⊆ Out C4oD4328-C4oD4.34C2^3128,2327
C4oD4.35C23 = C22xC8oD4φ: trivial image64C4oD4.35C2^3128,2303
C4oD4.36C23 = C2xQ8oM4(2)φ: trivial image32C4oD4.36C2^3128,2304
C4oD4.37C23 = C4.22C25φ: trivial image324C4oD4.37C2^3128,2305

׿
x
:
Z
F
o
wr
Q
<